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ABSTRACT

The present paper deals with the novel approach for clustering using the image feature of 
stabilization diagram for automated operational modal analysis in parametric model which 
is stochastic subspace identification (SSI)-COV. The evolution of automated operational 
modal analysis (OMA) is not an easy task, since traditional methods of modal analysis 
require a large amount of intervention by an expert user. The stabilization diagram and 
clustering tools are introduced to autonomously distinguish physical poles from noise 
(spurious) poles which can neglect any user interaction. However, the existing clustering 
algorithms require at least one user-defined parameter, the maximum within-cluster distance 
between representations of the same physical mode from different system orders and the 
supplementary adaptive approaches have to be employed to optimize the selection of cluster 
validation criteria which will lead to high demanding computational effort. The developed 

image clustering process is based on the 
input image of the stabilization diagram that 
has been generated and displayed separately 
into a certain interval frequency. and 
standardized image features in MATLAB 
was applied to extract the image features 
of each generated image of stabilisation 
diagrams. Then, the generated image feature 
extraction of stabilization diagrams was used 
to plot image clustering diagram and fixed 
defined threshold was set for the physical 
modes classification. The application of 
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image clustering has proven to provide a reliable output results which can effectively 
identify physical modes in stabilization diagrams using image feature extraction even for 
closely spaced modes without the need of any calibration or user-defined parameter at start 
up and any supplementary adaptive approach for cluster validation criteria.

Keywords: Automated OMA (AOMA), automatization, clustering, operational modal analysis, stabilization 

diagram 

INTRODUCTION

The advancement of automated operational modal analysis (OMA) has brought a recent 
trend in vibration-based monitoring and damage detection. Moreover, the mechanical and 
civil engineering appeal towards OMA is due to its ability to perform cost-effective and 
fast tests that depend solely on system responses. 

The identification of modal parameters using nonparametric model involved direct 
estimation from frequency response or power spectral densities specifically peaks picking 
from the complex mode indicator function (CMIF) (Shih et al., 1988) or the averaged 
normalized power spectral density (Peeters, 2000), that are plotted as a function of 
frequency. The process to automate the peak selection have been recently introduced which 
heavily relied on the use MAC index and peak picking method (Brincker et al., 2007; Pioldi 
et al., 2017; Pioldi & Rizzi, 2017; Rainieri et al., 2007; Rainieri & Fabbrocino, 2010). 
In the frequency domain, the estimation of modal parameters is always overestimated 
particularly modal damping ratio due to the power of the signal ‘leaking’ out to neighboring 
frequencies, well known as spectral leakage and cause modal peaks of the spectral density 
functions will become wider (Brandt, 2011). Since simulation studies have confirmed that 
the identification modal parameters derived from the state space model of the parametric 
method are much more accurate than the non-parametric estimates (Peeters & De Roeck, 
2001b; Reynders, 2009), most research effort has been spent in the automation of parametric 
techniques. Most research efforts have been heading towards automation engineering 
parametric techniques. Most research efforts have been directed towards parametric 
automation techniques.

In traditional modal identification using parametric method, the model order is often 
oversized in order to capture all physical modes in the frequency range of interest. Model 
oversizing is needed as models are often biased and do not include any noise modeling. The 
separation between physical and spurious modes involves a lot of interaction by a skilled 
analyst. Thus, a significant tool, such as a stabilization diagram, is needed to distinguish 
between physical and spurious modes. The selection of physical modes can be a complex 
task because it involved the setting of inconsistency thresholds for each modal parameter by 
the user (Piersol & Paez, 2010). The development of automated OMA procedures marked 
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a fundamental step toward the elimination of user intervention since traditional modal 
analysis requires a large amount of human intervention, particularly by an expert user.

Since a lot of human intervention is for monitoring purposes, early trials to automate 
modal identification focused on selection conditions and clustering tools to discriminate 
physical poles from others. The first attempts to automatically identify dynamic parameters 
were recorded during the last two decades based on the LSCF method performed using 
a number of deterministic and stochastic criteria and a fuzzy clustering approach. But it 
demanded high computational effort (Pappa et al., 1998; Peeters & De Roeck, 2001a; 
Vanlanduit et al., 2003). However, research efforts expanded after 2005, as demonstrated by 
the presence of numerous research papers over subsequent years. In recent years, research 
in automated OMA has become more systematic in term of analyses and arrangements 
(Andersen et al., 2007; Neu et al., 2017; Rainieri et al., 2011; Reynders et al., 2012).

A simple means for automated OMA was introduced by using the Stochastic Subspace 
Identification (SSI) technique and was utilized to perform structural health monitoring on 
the Z24 Bridge in Switzerland (Peeters & De Roeck, 2001a). This approach took advantage 
of the stabilization diagram on the choice of the poles that were at least five times stable 
and was able to trace the influences of varying environmental conditions on the modal 
parameters of Tamar bridge (Brownjohn & Carden, 2007). However, it had a drawback in 
terms of identifying physical poles. An enhancement of the SSI technique for automated 
OMA was introduced in subsequent years (Deraemaeker et al., 2008). Essentially, it was 
a tracking method because a number of modal parameters needed to be specified before 
beginning the procedure while using SSI and the stabilization diagram.

A fully automated OMA procedure by SSI was introduced in a similar period (Andersen 
et al., 2007). This multipatch subspace approach was applied to generate a clear stabilization 
diagram. Meanwhile, the selection for poles was implemented by the graph theory. It was 
a fast processing algorithm that was capable of being used as a monitoring routine, but 
additional enhancement was required to improve its robustness and reliability.

An improvised version of automated correlation-driven SSI, (COV-SSI) was 
accomplished several years later (Magalhaes et al., 2009). This algorithm was highly 
efficient in identifying closely spaced modes but was ineffective for weakly excited modes. 
The use of an advanced clustering algorithm permitted a reliable selection of physical modes 
with at least one user-defined parameter. However, several of these parameters needed 
to be specified at initial set up which could increase the time required for calibrations. 
A subsequent study proposed the use of an auto-generated parameter obtained from the 
real data using a fully automated with three-stage clustering approach. The three stages 
of the algorithm are related to the three stages in a manual analysis: setting stabilization 
thresholds for clearing out the diagram, detecting columns of stable modes, and selecting 
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a representative mode from each column (Reynders et al., 2012). However, this approach 
demands high computational time and effort.

An automated modal identification procedure using subspace identification techniques 
was proposed by tuning a few parameters and defining the clustering criterion for the 
random generation of the cluster seeds. This approach capable to deal with weakly excited 
and closely spaced modes (Ubertini et al., 2013). In 2015, a hybrid method for automated 
modal parameter identification (MPI) methods was introduced by combining analysis 
steps from different well-established OMA methods to simplify the interpretation of the 
stabilization diagrams, improving modal damping estimation and also neglecting the user-
predefined parameter but demanded high computational efforts because the additional 
method like the standardized Euclidean distance and the single linkage method were used 
to compute the distance between pairs of poles and to construct hierarchical cluster tree 
respectively (Rainieri & Fabbrocino, 2015).

In subsequence year, an automated operational modal analysis was presented to 
reduce the number of user interactions to a single set of consistency thresholds by using 
agglomerative hierarchical clustering and a certain distance threshold. In this case, the sum 
of normalized pole distance and MAC were used to calculate inter-cluster distance between 
two nearest clusters (Neu et al., 2016). Then in the next year, automated operational modal 
analysis using parametric (SSI-COV) method with the construction of tri-dimensional 
stabilization diagrams and clustering (hierarchical clustering) tools able to efficiently 
obtain set of values for parametric method input parameters (Marrongelli et al., 2017).
Then in the same year, a fully automated operational Modal analysis using parametric 
method (data-driven stochastic subspace identification (SSI) method) and multi-stage 
clustering was introduced to remove any user-provided thresholds and could be used for 
large system order ranges (Neu et al., 2017). The multi-stage clustering corresponds to 
hard validation criteria for remove certainly mathematical modes, k-means clustering to 
split modes into consistent and non-consistent sets, hierarchical clustering to divide the 
remaining modes into homogeneous sets and a threshold derived to remove mathematical 
modes. Additional steps were required in using hierarchical clustering. Besides that, Sun 
et al. (2017) introduced an automated operational modal analysis of a cable-stayed bridge 
by applying the proposed threshold for hierarchical clustering, two stages of k-means 
clustering were used to clear the stabilization diagram and identification of the final 
clusters and then density-based spatial clustering was applied to select the actual mode 
from each identified real cluster. In recent year, an automated procedure for covariance 
driven operational modal analysis (OMA) techniques was proposed to eliminate the need 
for a user interference for the selection of model order and size of the block-Hankel and 
block-Toeplitz matrices based on the reconstruction of the auto-correlation function from 
the cluster of complex poles (Bajrić et al., 2018). Then, the present study performed an 
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autonomous modal parameter estimation with three-dimensional space optimization by 
using non-iterative correlation-based method and fuzzy c-means for the clustering and 
bootstrap sampling (Yaghoubi et al., 2018). In the same year, an automated operational 
modal analysis methodology based on an eigensystem realization algorithm (ERA) and a 
two-stage clustering strategy was proposed (Yang et al., 2018). The proposed study using 
fuzzy C-means (FCM) clustering to separate stable modes from unstable ones. Also, in the 
presented study, the automated operational modal analysis (OMA) using stochastic subspace 
identification method and a three-stage clustering algorithm was proposed to automatically 
estimate the modal parameters (Marwitz et al., 2018). The most recent study introduced 
a novel multiscreening algorithm for the automated modal parameter identification based 
on the searching and averaging processes between clusters, and automatically identify 
the system poles on the basis of the numbers of their repetition in the spectral density via 
k-means clustering algorithms (Afshar & Khodaygan, 2019).

The above-mentioned literature demonstrates the current clustering tools require at least 
one user-defined parameter, the maximum within-cluster distance between representations 
of the same physical mode from different system orders and the supplementary adaptive 
approaches have to be employed to optimize the selection of cluster validation criteria 
which will lead to high demanding computational effort (Neu et al., 2017; Rainieri & 
Fabbrocino, 2014; Reynders et al., 2012; Yaghoubi et al., 2018). Thus, this paper will focus 
on developing a new clustering algorithm using image feature extraction that effectively 
identifies physical modes and neglect any calibration or user-defined parameter at start 
up and the need of any supplementary adaptive approach for cluster validation criteria.

MATERIALS AND METHODS

This analysis concerning a set of data from real structure, the Heritage Court Tower (HCT) 
building for verifying the theoretical framework which is using automatic versions of SSI-
COV with the actual characteristics of realistic civil engineering structures. The structural 
dynamic testing on 15 stories of the Heritage Court Tower (HCT) building was carried 
out by researchers from the University of British Columbia (Bricker & Venture, 2015). 

This building generally is characterised by representations of the closely spaced 
modes for the first three modes with the expectations of torsional and lateral vibration 
mode couplings, especially in the east-west direction, and corrupted with “noise modes” 
or spurious modes that originated from drilling and human activities close to the sensors 
during data acquisition.

The input natural excitation was based on wind and human activity as the construction 
of the building was about to be completed. The measurements were captured over a long 
period of time in order to ensure the loading on the structure is stochastic enough and behave 
according to white noise excitation for all modes to be adequately excited. The adopted 
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parameters in the processing were: length of time series, t (327.7s); the adopted time step 
(0.025s); sampling frequency (40 Hz) and adopted frequency resolution (0.0031Hz).Then, 
the input data was decimated to a Nyquist frequency of 5Hz which only concerning the 
dominant modes with  representations of the three closely spaced modes from 1.2 to 1.5 Hz.

Automated Stochastic Subspace Identification (SSI)-COV

Automated OMA using Stochastic Subspace Identification (SSI)-COV comprises the 
subsequent steps as shown in Figure 1.

Figure 1. The following steps for automated OMA using parametric methods.

Stochastic Subspace Technique (SSI)

Stochastic Subspace Identification (SSI) has been a recognized approach since the previous 
decade, primarily because of its user-friendly execution (Bricker & Venture, 2015). This 
paper is only concerned with correlation-driven SSI (COV-SSI), one of SSI method. The 
COV-SSI analyze a stochastic state-space model from the response data of the structure 
(Rainieri & Fabbrocino, 2014) and working algorithm almost similar to Eigenvalue 
Realization Algorithm (ERA) (Peeters & De Roeck, 1999). The further details of its 
derivation are defined below. 

The initial step was to compute the output correlations as shown in Equation (1).  
indicates the correlation matrix at time lag i based on discrete data as follows:

(1)                                                                                                                                   

Where [Y(1:N-i)] is the data matrix Y with the last block rows i removed and [Y(i:N)]T
 is 

the transpose data matrix with the first block rows i removed. Hence each [Ri] matrix got 
dimensions l*l. The computed correlations at different time lags were then stored in the 
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block Toeplitz matrix. The size of Toeplitz matrix became n*n when estimating modal 
parameter with model order n. Thus, the subsequent Equation 3 should be correct for the 
number of block rows i:

The magnitude, x and maximum system order, n were set as 2 and 50 modes 
respectively. The next step was to calculate the singular value decomposition (SVD) of the 
block Toeplitz that could provide the unitary matrices [U] and [V]. The positive singular 
values were ranked in descendant order of the diagonal matrix [Σ] as fin Equation 4 (Wall 
et al., 2003).

To extract the dynamic response, the state matrix [A] needs to be obtained. 
This was done for each order from 1 to nmax. The observability matrix [0i] and 
the reversed controllability matrix [Ti] were found by the factorization of [T1|i].           
The result of SVD of [T1|i]computed in Equation 4 could be used to find [0i] and [Ti] by 
separating the SVD into two parts and using the identity matrix [I] as in Equation 8 and 9:

Now that [0i]and [Ti] had been obtained, the output influence matrix [C] and the state-
output covariance matrix [G] could be computed. Matrix [C] was attained from the first 
l rows of [0i]. Meanwhile, [G] was obtained from the last l columns of [Ti]. The normal 
Toeplitz matrix produces Equation 10:

Resolving the eigenvalue problem for [A] produces the diagonal matrix [M] and the 
eigenvectors  as in Equation 12:

                                                                                                                                                

The mode shapes of the system  were attained from  and [C]and the other modal 
parameters were attained from the eigenvalues µm, which were found in the diagonal matrix 
[M]. The values were in discrete time and need to be transformed to continuous time as 
in Equation 14:

λ_m=ln⁡〖(μ_m)〗/(△t)                                 		  (8)                                

the complex λm comprised the continuous time eigenvalues of each mode for the current 
order which used to estimate the natural frequencies (ωn), damped modal frequencies 
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(ωd) and modal damping ratio ( ).The step of identifying the state matrix and the modal 
parameters were repeated for each order up until nmax before plotted in a stabilization 
diagram.

Stabilization Diagram

The stabilization diagram is a typical means to distinguish physical poles from noise 
(spurious) poles, and once the model parameters are obtained, it was achieved by identifying 
poles with an increasing model order. Since the system model was frequently oversized, 
the plot would comprise noise modes which arose from physical reasons. Theoretically, 
the stabilize physical modes can be identified by the vertical alignment of stable poles, 
while noise modes are scattered. This is based on the poles comparability with respect 
to the order of the given model with the obtained from a lower order model (Rainieri & 
Fabbrocino, 2014).

The natural frequencies and damping ratio of poles from two orders were compared 
using Equation 18 and 19 (Schanke, 2015):

Only poles that satisfy a stabilization criterion set by the user (x and y) were considered 
as stable. The following thresholds were set for variation between models of following 
orders: natural frequency variation < 1% (Magalhães, 2010) and modal damping ratio 
variation < 5%. These thresholds allow the clear dissimilarity of vertical alignments of 
stable modes. The stabilization diagram constructed from the first data sets obtained from 
the structural dynamic testing of HCT can be seen in Figure 2 and Figure 3.

Figure 2. Singular values of the spectral matrix with stabilization diagram for first data sets of the HCT building.
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Proposed Approach for Clustering. The procedure of using image clustering with respect 
to the similar physical pole of the stabilization diagrams is as follows:

Input Image 

The process of image clustering requires the input image of the stabilization diagram that 
has been cut down into a certain interval frequency accordingly. In this case, the stabilization 
diagram was generated and displayed separately into every frequency according to 0.01 
interval, (maximum frequency, 5Hz)/ 0.01 = 500 total images. Thus, every image represents 
the frequency of 0.01 Hz. The process of this procedure is shown in Figure 4 and Figure 
5. In order to make image feature extraction more efficient, all axes and legend in the plot 
of these images had to be removed.

Figure 3. Stabilization diagram for first data sets of the HCT building.

Figure 4. Flowchart process of generated input images from a stabilization diagram.with a 0.1 Hz interval 
frequency 
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Image Feature Extraction 

Then, the standardized image features from MATLAB was applied in this study to extract 
the image features of each image of stabilization diagrams that were previously generated. 
These features specifically represent the characteristics of each parameter (natural 
frequencies, damping ratios) for different conditions, either stable or unstable. Table 1 
summarizes the features of the extracted images and their characteristic values. All the 
six standardized image features were used in this study in order to determine which image 
feature was the most appropriate to capture all the modes of interest particularly in term 
of computational mode appearance. 

Figure 5. Illustration of generated input images from a stabilization diagram.with a 0.1 Hz interval frequency 
for feature extraction 

Table 1
Image features and their characteristic values

No Feature Characteristic value
1 Features from FAST Corner Points
2 Minimum Eigenvalues Corner Points
3 Harris Stephens Corner Points
4 Speeded-Up Robust Features Blob
5 Binary Robust Invariant Scalable Keypoints Multiscale Corner
6 Maximally Stable External Regions Regions

Generally, the image feature will provide a certain value based on its image characteristic. 
If the image is blank, the value will become zero, otherwise if the pole appears, the value 
will increase. The increasing value of image feature extraction depends on the number of 
poles appeared in that particular image. It works well with stabilization diagram because 
the stabilize physical modes consists of the vertical alignment of stable poles, while noise 
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Figure 6. Flowchart process of image feature extraction 

modes are scattered. By generating the image of stabilization diagram according to 0.01 
interval frequency (cut down vertically), the poles can be clustered accordingly. Therefore, 
the generated input image based on interval frequency of stabilization diagram play a key 
role for the performance of the image feature extraction. Details explanation about the 
process of this procedure was shown in Figure 6.
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Selection of Physical Modes

The selection of the physical modes of the system that was autonomously implemented 
involved the MATLAB command – find – and the threshold in order to discriminate the 
unwanted mode and the actual modes. The threshold is determined by the half of the 
maximum peak in the image clustering plot. The selection of peaks in the image clustering 
plot are determine by using MATLAB command – find –. The value of image features 
extraction below than this threshold in image clustering plot represents the unwanted or 
computational mode, otherwise consider as dominant mode or physical mode.

RESULTS AND DISCUSSION

Image-based vibration measurement has brought a great attention to civil engineering 
communities and is increasingly being used in the area of structural dynamics, particularly 
for modal analysis and damage identification (Javh et al., 2018; Olaszek, 1999; Park et al., 
2018; Peters & Ranson, 1982; Sarrafi et al., 2019). Optically-acquired data, usually from 
digital image correlation as an alternative method was introduced to reduce labor-intensive 
tasks during dynamic testing involving multiple number of accelerometers and handling 
the wiring and the connections (Chang et al., 2019; Sarrafi et al., 2019). Numerous image-
processing techniques are being used to identify the displacements from image sequences. 
Among the most commonly used technique are: Gradient-Based Optical Flow (Horn & 
Schunck, 1981; Javh et al., 2017; Lucas & Kanade, 1981), Gradient-Based Digital Image 
Correlation (DIC) (Peters & Ranson, 1982), in fact the Lucas-Kanade method from (Lucas 
& Kanade, 1981) is the general form of DIC (Schreier et al., 2009), Point Tracking (Olaszek, 
1999) and Phase-Based method (Fleet & Jepson, 1990; Sarrafi et al., 2019). Existing 
image-based applications are mostly used to detect movement of target objects and act as 
virtual sensors, but in contrast to this study the use of image-based applications involves 
image feature extraction as a new tool for clustering of actual modes and unwanted modes 
in the stabilization diagram.

The image clustering results plotted using image features extraction were displayed 
in Figure 7 with all the poles of the stabilization diagram that are presented in Figure 3. 
Moreover, the results of the estimated natural frequency using automated SSI- COV with 
image clustering in identification of physical modes are characterized in Table 2.

Based on the results of image clustering using six standardized image features in Figure 
7, they show that all standardized image featured except for speeded-up robust features 
which was using blob as characteristic value capable to provide the clear illustration 
of image clustering plot with the appearance of all modes of interest particularly for 
computational or unwanted mode. A clear appearance of noise or unwanted mode was at 
a frequency of 0.21 Hz. Knowing the frequency that represents noise mode is essential 
because it can be used for the next step for removing the unwanted mode from original 
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Figure 7. Image clustering plot by using image features extraction from (a) FAST, (b) Minimum Eigenvalues, 
(c) Harris Stephens, (d) Speeded-Up Robust Features, (e) Binary Robust Invariant Scalable Keypoints and (f) 
Maximally Stable External Regions respectively

Table 2
Identification results using image clustering on the stabilization diagram for the first data sets of the HCT 
building case. Modes determined to be physical are shown here

Mode Feature Frequency value
1 419 1.2500
2 446 1.3000
3 417 1.4600
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signal and reconstructed back to become a clean input time series signal. Moreover, this 
approach is also highly efficient in identifying and clearly separating closely spaced modes 
as seen in Figure 7 for the first three closely spaced modes of HCT from 1.2 to 1.5 Hz.  

The outcomes of this study show that image clustering for the physical modes 
identification of stabilization diagrams is an effective method to identify modes without 
the need of any calibration or user-defined parameter at start up and any supplementary 
adaptive approach for cluster validation criteria that are summarized in Table 3 below. 
The comparative study with existing clustering is also well described in that table. Using 
standardized image features in MATLAB, image clustering provided a clear distinction 
of stable modes that signify structural modes. These standardized image features play a 
vital role in identifying which image represents the vertical alignment of stable modes. 

In summary of Table 3 above, some common def﻿iciencies have compromised the 
existing automated OMA methods (Hasan et al., 2019):

•	 The estimation of actual structural modes requires several predefined set parameters 
•	 A time-demanding setting procedure for each analysis of the data set is compulsory 

at start-up 
•	 The values for thresholds and parameters are inconsistent due to natural variations 

in modal properties of structures that come from damage or environmental 
influences.

•	 The existing clustering algorithms need supplementary adaptive approach for 
cluster validation criteria.

Table 2 (Continued)

Mode Feature Frequency value
4 361 3.8500
5 323 4.2500

Table 3
Comparison of the proposed approach with existing clustering algorithms

Proposed approach
(image clustering)

Hierarchical Non-hierarchical

Advantages Effective identification of 
modes without the need of 
any supplementary adaptive 
approach for
cluster validation criteria
Does not require any 
parameters setup.
Easy to implement and
does not requires any
expert user.

The more informative 
structure that allowing 
a good choice of the 
last number of clusters, 
depending on the 
previous construction 
of hierarchical tree.

Computationally faster 
than Hierarchical clustering 
for many variables.
May produce tighter 
clusters than hierarchical 
clustering
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Table 3 (Continued)

Proposed approach
(image clustering)

Hierarchical Non-hierarchical

Disadvantages Require plenty of images
for reliable identification
of structural modes.

Computationally 
demanding due the 
existence of many 
individuals, and the 
similarity of each 
individual must be 
calculated.
Data order has an 
impact on the results.
Highly sensitive to 
outliers.

The number of clusters 
must be specified, and 
cluster seeds need to be 
chosen.
Seeds are chosen 
randomly which can 
cause inconsistent results.

CONCLUSIONS

This research demonstrates that the use of image clustering approach permits reliable 
identification of structural modes and unwanted modes without the need of any calibration 
or user-defined parameter at start up and any supplementary adaptive approach for cluster 
validation criteria. This prove by a clear appearance of noise or unwanted mode is at a 
frequency of 0.21 Hz.  This approach is also user-friendly and does not require any expertise 
to conduct. Moreover, this approach is highly efficient in identifying and clearly separating 
closely spaced modes as seen in Figure 7 for the first three closely spaced modes of HCT 
from 1.2 to 1.5 Hz.

This research will be the basis for future research to improve automation technique 
as a modal information engine in vibration-based monitoring and damage detection by 
reducing some of the general shortcomings of the automated OMA methods. 

ACKNOWLEDGMENTS

The authors would like to extend their greatest gratitude to the Institute of Noise and 
Vibration UTM for funding the current study under the Higher Institution Centre of 
Excellence (HICoE) Grant Scheme (R.K130000.7843.4J227). Additional funding for this 
research came from the UTM Research University Grant (Q.K130000.2543.11H36) and 
the Fundamental Research Grant Scheme (R.K130000.7840.4F653) from The Ministry 
of Higher Education, Malaysia.

REFERENCES
Afshar, M., & Khodaygan, S. (2019). Enhanced stabilization diagram for automated modal parameter 

identification based on power spectral density transmissibility functions. Structural Control and Health 
Monitoring, 26(7), 1-24.



Muhammad Danial Abu Hasan, Zair Asrar Ahmad, Mohd Salman Leong and Lim Meng Hee

64 Pertanika J. Sci. & Technol. 28 (1): 49 - 67 (2020)

Andersen, P., Brincker, R., Goursat, M., & Mevel, L. (2007, April 30 – May 2). Automated modal parameter 
estimation for operational modal analysis of large systems. In Proceedings of the 2nd international 
operational modal analysis conference (pp. 299-308). Copenhagen, Denmark.

Bajrić, A., Høgsberg, J., & Rüdinger, F. (2018). Evaluation of damping estimates by automated operational 
modal analysis for offshore wind turbine tower vibrations. Renewable Energy, 116, 153-163. 

Brandt, A. (2011). Noise and vibration analysis: signal analysis and experimental procedures. Chichester, 
UK: John Wiley and Sons.

Bricker, R., & Venture, C. (2015). Introduction to operational modal analysis. Chichester, UK: John Wiley 
and Sons.

Brincker, R., Andersen, P., & Jacobsen, N. J. (2007, February 19-22). Automated frequency domain 
decomposition for operational modal analysis. In Proceedings of The 25th International Modal Analysis 
Conference (IMAC), (pp. 1-7). Orlando, Florida.

Brownjohn, J. M., & Carden, E. P. (2007, November 14-16). Tracking the effects of changing environmental 
conditions on the modal parameters of Tamar Bridge. In 3rd International Conference on Structural 
Health Monitoring and Intelligent Infrastructure. Vancouver, Canada.

Chang, Y. H., Wang, W., Chang, J. Y., & Mottershead, J. E. (2019). Compressed sensing for OMA using full-
field vibration images. Mechanical Systems and Signal Processing, 129, 394-406. 

Deraemaeker, A., Reynders, E., De Roeck, G., & Kullaa, J. (2008). Vibration-based structural health monitoring 
using output-only measurements under changing environment. Mechanical Systems and Signal Processing, 
22(1), 34-56.

Fleet, D. J., & Jepson, A. D. (1990). Computation of component image velocity from local phase information. 
International Journal of Computer Vision, 5(1), 77-104.

Hasan, M. D. A., Ahmad, Z. A. B., Leong, M. S., Hee, L. M., & Haffizzi Md. Idris, M. (2019). Cluster Analysis 
for Automated Operational Modal Analysis: A Review. In MATEC Web of Conferences (Vol. 255, p. 1-5). 
Les Ulis, France: EDP Sciences.

Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185-203.

Javh, J., Slavič, J., & Boltežar, M. (2017). The subpixel resolution of optical-flow-based modal analysis. 
Mechanical Systems and Signal Processing, 88(August 2016), 89-99. 

Javh, J., Slavič, J., & Boltežar, M. (2018). Measuring full-field displacement spectral components using 
photographs taken with a DSLR camera via an analogue Fourier integral. Mechanical Systems and Signal 
Processing, 100, 17-27. 

Lucas, B. D., & Kanade, T. (1981, August 24-28). An iterative image registration technique with an application 
to stereo vision. In Proceeding 7th International Joint Conference on Artificial Intelligence (pp. 674-679). 
Vancouver, British Columbia.

Magalhães, F. (2010). Operational modal analysis for testing and monitoring of bridges and special structures 
(Doctorial Thesis). University of Porto, Portugal.



A Novel Approach for Automated OMA Using Image Clustering

65Pertanika J. Sci. & Technol. 28 (1): 49 - 67 (2020)

Magalhaes, F., Cunha, A., & Caetano, E. (2009). Online automatic identification of the modal parameters of 
a long span arch bridge. Mechanical Systems and Signal Processing, 23(2), 316-329.

Marrongelli, G., Magalhães, F., & Cunha, Á. (2017). Automated operational modal analysis of an arch bridge 
considering the influence of the parametric methods inputs. Procedia Engineering, 199, 2172-2177. 

Marwitz, S., Zabel, V., & Könke, C. (2018). Modalanalyse von Monitoringdaten eines Sendeturms [Modal 
analysis of monitoring data of a transmission tower]. Bautechnik, 95(4), 288-295. 

Neu, E., Janser, F., Khatibi, A. A., & Orifici, A. C. (2016). Automated modal parameter-based anomaly detection 
under varying wind excitation. Structural Health Monitoring, 15(6), 730-749. 

Neu, E., Janser, F., Khatibi, A. A., & Orifici, A. C. (2017). Fully automated operational modal analysis using 
multi-stage clustering. Mechanical Systems and Signal Processing, 84, 308-323. 

Olaszek, P. (1999). Investigation of the dynamic characteristic of bridge structures using a computer vision 
method. Measurement, 25(3), 227-236.

Pappa, R. S., James, G. H., & Zimmerman, D. C. (1998). Autonomous modal identification of the space shuttle 
tail rudder. Journal of Spacecraft and Rockets, 35(2), 163-169.

Park, K. T., Torbol, M., & Kim, S. (2018). Vision-based natural frequency identification using laser speckle 
imaging and parallel computing. Computer-Aided Civil and Infrastructure Engineering, 33(1), 51-63. 

Peeters, B. (2000). System identification and damage detection in civil engineering (Doctoral Thesis). 
Katholieke Universiteit Leuven, Belgium.

Peeters, B., & De Roeck, G. (1999). Reference-based stochastic subspace identification for output-only modal 
analysis. Mechanical Systems and Signal Processing, 13(6), 855-878.

Peeters, B., & De Roeck, G. (2001a). One‐year monitoring of the Z24‐Bridge: environmental effects versus 
damage events. Earthquake Engineering and Structural Dynamics, 30(2), 149-171.

Peeters, B., & De Roeck, G. (2001b). Stochastic system identification for operational modal analysis: A review. 
Journal of Dynamic Systems, Measurement, and Control, 123(4), 659-667. 

Peters, W. H., & Ranson, W. F. (1982). Digital imaging techniques in experimental stress analysis. Optical 
Engineering, 21(3), 427-431.

Piersol, A. G., & Paez, T. L. (2010). Harris’ shock and vibration handbook (6th ed.). New York, USA: 
McGraw-Hill.

Pioldi, F., & Rizzi, E. (2017). A refined frequency domain decomposition tool for structural modal monitoring 
in earthquake engineering. Earthquake Engineering and Engineering Vibration, 16(3), 627-648. 

Pioldi, F., Ferrari, R., & Rizzi, E. (2017). Earthquake structural modal estimates of multi-storey frames by 
a refined Frequency Domain Decomposition algorithm. JVC/Journal of Vibration and Control, 23(13), 
2037-2063. 

Rainieri, C, Fabbrocino, G., & Cosenza, E. (2007). Automated operational modal analysis as structural health 
monitoring tool: theoretical and applicative aspects. Key Engineering Materials, 347, 479-484.



Muhammad Danial Abu Hasan, Zair Asrar Ahmad, Mohd Salman Leong and Lim Meng Hee

66 Pertanika J. Sci. & Technol. 28 (1): 49 - 67 (2020)

Rainieri, C., Fabbrocino, G., & Cosenza, E. (2011). Near real-time tracking of dynamic properties for standalone 
structural health monitoring systems. Mechanical Systems and Signal Processing, 25(8), 3010-3026.

Rainieri, C., & Fabbrocino, G. (2010). Automated output-only dynamic identification of civil engineering 
structures. Mechanical Systems and Signal Processing, 24(3), 678-695.

Rainieri, C., & Fabbrocino, G. (2014). Operational modal analysis of civil engineering structures. New York, 
NY: Springer.

Rainieri, C., & Fabbrocino, G. (2015). Development and validation of an automated operational modal analysis 
algorithm for vibration-based monitoring and tensile load estimation. Mechanical Systems and Signal 
Processing, 60, 512-534. 

Reynders, E. (2009). System identification and modal analysis in structural mechanics (PhD thesis). Katholieke 
Universiteit Leuven, Belgium.

Reynders, E., Houbrechts, J., & De Roeck, G. (2012). Fully automated (operational) modal analysis. Mechanical 
Systems and Signal Processing, 29, 228-250. 

Reynders, E., Houbrechts, J., & Roeck, G. De. (2012). Fully automated (operational) modal analysis. 
Mechanical Systems and Signal Processing, 29, 228-250. 

Sarrafi, A., Poozesh, P., Niezrecki, C., & Mao, Z. (2019). Detection of natural frequency and mode shape 
correspondence using phase-based video magnification in large-scale structures. In Structural Health 
Monitoring, Photogrammetry & DIC (Vol. 6, pp. 81-87). Cham, Switzerland: Springer 

Schanke, S. A. (2015). Operational modal analysis of large bridges (Master Thesis). Norwegian University 
of Science and Technology, Norway.

Schreier, H., Orteu, J. J., & Sutton, M. A. (2009). Image correlation for shape, motion and deformation 
measurements: Basic concepts, theory and applications (Vol. 1). Boston, MA: Springer-Verlag.

Shih, C. Y., Tsuei, Y. G., Allemang, R. J., & Brown, D. L. (1988). Complex mode indication function and its 
applications to spatial domain parameter estimation. Mechanical Systems and Signal Processing, 2(4), 
367-377. 

Sun, M., Makki-Alamdari, M., & Kalhori, H. (2017). Automated operational modal analysis of a cable-stayed 
bridge. Journal of Bridge Engineering, 22(12), 1-26. 

Ubertini, F., Gentile, C., & Materazzi, A. L. (2013). Automated modal identification in operational conditions 
and its application to bridges. Engineering Structures, 46, 264-278. 

Vanlanduit, S., Verboven, P., Guillaume, P., & Schoukens, J. (2003). An automatic frequency domain modal 
parameter estimation algorithm. Journal of Sound and Vibration, 265(3), 647-661.

Wall, M. E., Rechtsteiner, A., & Rocha, L. M. (2003). Singular value decomposition and principal component 
analysis. In D. P. Berrar, W. Dubitzky & M. Granzow (Eds.), A practical approach to microarray data 
analysis (pp. 91-109). Boston, MA: Springer.

Yaghoubi, V., Vakilzadeh, M. K., & Abrahamsson, T. J. S. (2018). Automated modal parameter estimation using 
correlation analysis and bootstrap sampling. Mechanical Systems and Signal Processing, 100, 289-310. 



A Novel Approach for Automated OMA Using Image Clustering

67Pertanika J. Sci. & Technol. 28 (1): 49 - 67 (2020)

Yang, X. M., Yi, T. H., Qu, C. X., Li, H. N., & Liu, H. (2018). Automated eigensystem realization algorithm 
for operational modal identification of bridge structures. Journal of Aerospace Engineering, 32(2), 1-24.




